Curl error: Could not resolve: clients1.google.com (Could not contact DNS servers)
ems 패드 - 2024년 실시간 업데이트
KAIST,LLM 활용한 금속유기골격체 물성 예측
96%의 높은 검색 정확도.역설계시 87.5% 보여
소재 분야에서 원하는 물질에 대한 자세하고 정확한 정보를 제공하는 생성형 인공지능(AI) 모델이 개발됐다.
KAIST는 김지한 생명화학공학과 교수 연구팀이 대형언어모델(LLM)을 활용해 금속유기골격체(MOF)의 특성을 예측하고,ems 패드새로운 재료를 자동 생성하는 '챗봇 시스템(챗MOF)'를 개발했다고 26일 밝혔다.
MOF는 금속 이온과 결합한 유기 분자로 표면에 많은 구멍이 뚫려 있어 물질을 흡수하기 쉬워 가스 분리 및 저장,ems 패드약물 전달,ems 패드촉매 등 다방면으로 활용할 수 있는 신소재이다.챗GPT와 같은 대형언어모델은 소재 분야에 적용하기 어려웠다.소재 데이터를 텍스트 형태로 변환하기 쉽지 않고,언어·사진 등에 비해 데이터가 현저히 적어 많은 가중치를 가진 LLM을 학습하기 힘든 한계가 있다.
연구팀이 개발한 챗MOF는 표로부터 데이터를 검색하는 '검색도구'를 비롯해 머신러닝을 이용해 물성을 예측하는 '예측도구',ems 패드원하는 물성을 가지는 물질을 역설계하는 '생성 도구',ems 패드계산기와 단위변환기 등과 같은 다양한 도구를 통해 사용자의 질문에 적절한 답을 할 수 있고,사용자가 원하는 물성을 가진 MOF를 역설계할 수도 있다.
검색과 예측 작업에서 각각 96.9%,ems 패드95.7%의 높은 정확도를 보였고,더 복잡한 구조 생성 작업에서도 87.5%의 높은 정확도를 달성했다고 연구팀은 설명했다.
김지한 KAIST 교수는 "재료과학 분야에서 AI의 더 높은 자율성을 확보했다는 데 의미가 있다"며 "챗MPF의 성능을 더욱 최적화해 금속유기골격체 연구 분야에서 새로운 혁신을 지속적으로 추진하겠다"고 말했다.
이 연구결과는 국제 학술지 '네이처 커뮤니케이션즈(지난 3일)'에 실렸다.