NO.1: 경마 시뮬레이터
NO.2: 경마 시뮬레이터 코드
NO.3: 로블록스 경마 시뮬레이터 코드
(대전=뉴스1) 김태진 기자 = 국내 연구진이 미국 드렉셀대학과 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량,경마 시뮬레이터충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발해 주목된다.
한국과학기술원(KAIST)은 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI),미국 드렉셀대학과 공동으로 다양한 조성과 각기 다른 충·방전 사이클의 NCM(니켈·코발트·망간) 양극재 주사전자현미경 사진을 합성곱 신경망(CNN) 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다.
CNN은 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류다.
연구팀은 자율주행차에 적용 가능한 합성곱 신경망 기반 인공지능에 배터리 소재의 표면 영상을 학습시켜 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측할 수 있게 했다.
이어 이러한 방법론이 첨가제가 들어간 양극재에도 적용 가능한지 확인한 결과 함량은 상당히 정확하게 예측하는 반면 충·방전 상태는 정확도가 낮다는 단점을 알게 됐다.
연구팀은 향후 다양한 공정을 통해서 만든 배터리 소재의 형상을 학습시켜 차세대 배터리의 조성 균일성 검수 및 수명 예측에 활용할 계획이다.
홍승범 교수는 “이번 연구는 세계 최초로 마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 인공지능 기반 방법론을 개발한 데 의의가 있다"고 말했다.
이번 연구는 KAIST 신소재공학과 졸업생 오지민 박사와 염지원 박사가 공동 제1 저자로,경마 시뮬레이터ETRI 김광만 박사와 미국 드렉셀 대학교 아가르 교수가 공동저자로 참여했다.
연구 성과는 국제 학술지 '엔피제이 컴퓨테이셔날 머티리얼즈'에 지난 5월 4일 게재됐다.