NO.1: kbo 외국인 샐러리캡
NO.2: kbo 외국인 선수 샐러리캡
생명화학공학과 김지한 교수 연구팀
금속 유기 골격체의 물성 예측과 역설계 수행 챗봇 시스템 개발
[서울경제]
KAIST 연구진이 챗GPT를 활용해 큰 다공성,kbo 외국인 샐러리캡높은 표면적,kbo 외국인 샐러리캡그리고 뛰어난 조절 가능성으로 많은 화학 응용 분야에서 사용되는 금속 유기 골격체의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(이하 챗MOF)을 개발했다.챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보여 관심을 모으고 있다.
KAIST는 생명화학공학과 김지한 교수 연구팀이 인공지능(AI)의 급격한 발전에 주목하며 대규모 언어 모델(LLMs) 활용을 통해 금속 유기 골격체(MOFs·Metal-Organic Frameworks)의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(ChatMOF)을 개발했다고 26일 발표했다.
최근 인공지능(AI)의 발전에는 큰 도약이 있었지만 재료 과학에서의 LLM의 잠재력을 완전히 실현하기에는 여전히 물질의 복잡성과 재료별 특화된 훈련 데이터의 부족이라는 한계점이 존재했다.
김지한 교수 연구팀이 개발한 챗MOF는 재료 분야에서 전통적인 머신러닝 모델과 LLM을 결합한 혁신적인 접근 방식으로 계산 및 머신러닝 도구에 대한 초보자들과의 격차를 상당히 줄일 수 있는 잠재력을 가지고 있다.
또한 이 독특한 시스템은 인공지능의 변혁적인 능력과 재료 과학의 복잡한 측면들을 연결하며 다양한 작업에서 뛰어난 성능을 보여준다.챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보고한다.더 복잡한 구조 생성 작업은 그 복잡함에도 불구하고 주목할 만한 87.5%의 정확도를 달성한다.이처럼 유망한 결과는 챗MOF가 가장 요구가 많은 작업을 관리하는 데도 효과적임을 강조한다.
김 교수는 “연구팀이 개발한 기술은 재료 과학 분야에서 인공지능의 더 높은 자율성을 달성하기 위한 중요한 진전을 나타낸다.기술이 발전함에 따라 모델 용량과 온라인 플랫폼에서의 데이터 공유에 대한 체계적인 개선을 통해 챗MOF의 성능을 더욱 최적화할 수 있고 이는 금속 유기 골격체 연구 분야에서 놀라운 진전을 촉진할 수 있다”고 말했다.
KAIST 생명화학공학과 강영훈 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션즈(Nature communications)’에 지난 6월 3일 게재됐다.
kbo 외국인 선수 샐러리캡
:/연합뉴스 육군훈련소에서 군기 훈련을 받던 중 쓰러져 이틀 뒤 사망한 훈련병이 완전군장을 하고 연병장에서 ‘선착순 달리기’를 하는 등 가혹 행위에 준하는 훈련을 받은 정황이 추가로 확인됐다.
kbo 외국인 샐러리캡,[사진='더선' 보도내용 캡처/ 셀러리 사진=게티이미지뱅크]7개월 딸 아이에게 무심코 쥐어 준 간식 때문에 생긴 발진을 보고 놀란 엄마의 사연이 소개됐다.