파워뱅크 파는곳 - 2024년 실시간 업데이트
KAIST 연구팀,ETRI·美 드렉셀대와 공동 연구
배터리 표면 형상만 보고 원소 함량,충·방전 확인[이데일리 강민구 기자] 한국과 미국 연구진이 인공지능(AI) 학습을 통해 배터리 표면 형상만 보고 각 원소 함량과 충·방전 횟수 정보를 높은 정확도로 알아내는 영상인식 기술을 선보였다.
한국과학기술원(KAIST)은 홍승범 신소재공학과 교수가 한국전자통신연구원(ETRI),파워뱅크 파는곳미국 드렉셀대와 함께 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망 기반 AI에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 개발했다고 2일 밝혔다.
연구팀은 반도체 공정처럼 배터리 공정도 자동화된 SEM으로 양극재 표면을 검수해서 원하는 조성대로 합성됐는지 수명은 신뢰성 있게 나올 것인지를 확인해 불량률을 줄일 수 있으리라고 봤다.
특히 자율주행차에 적용가능한 합성곱 신경망 기반 AI에 배터리 소재 표면 영상을 학습시켜 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측했다.이 방법이 첨가제가 들어간 양극재에도 적용가능한지 확인한 결과 함량을 정확하게 예측했다.다만 충·방전 상태는 정확도가 낮게 나타났다.
연구팀은 앞으로 다양한 공정을 통해 만든 배터리 소재 형상을 학습시켜 차세대 배터리 조성 균일성 검수와 수명 예측에 활용할 계획이다.
홍승범 KAIST 교수는 “마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 AI 기반 방법론을 개발했다”며 “연구에서 개발된 현미경 영상 기반 배터리 소재 함량과 상태 감별 방법론은 배터리 소재 성능과 품질 향상에 중요한 역할을 하게 될 것”이라고 말했다.
파워뱅크 파는곳 - 슬롯사이트 순위 추천
파워뱅크 파는곳 - 슬롯사이트 순위 추천:그동안 미국에 필적하는 항모, 스텔스 전투기를 개발했다고 자랑해오던 것과 전혀 다른 말을 한 거죠.
파워뱅크 파는곳,놀랍게도 가족 단위로 언제든 차를 몰고 찾을 수 있도록 널찍한 주차장을 두고 있습니다.